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About this Lecture

Linear regression is by far the most important estimation technique in causal
inference

Yes, I know, machine learning is all the rage these days

▶ But a linear approximation is often the best we can do
▶ It’s already hard enough to get the linear approximation right
▶ Fancy techniques are not always better
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About this Lecture

Part I: how does regression work? A recap

▶ Why we use linear regressions and how we estimate them
▶ The sampling distribution of the OLS estimator

Part II: selection on observables

▶ Multivariate regression can be used for causal inference
▶ But for that we need to make strong assumptions
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Resources

The material behind these slides can be found in any good econometrics textbook. For
introductory econometrics, I recommend

▶ Wooldridge, J. Introductory Econometrics: A Modern Approach. 7th Edition.
South-Western College Publishing, 2019.

▶ Stock, J. and M. Watson. Introduction to Econometrics. 3rd Edition. Pearson,
2017.
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Regression recap

Why do we use linear regression?

▶ What we want to approximate: the conditional expectation function (CEF)

How does regression work?

▶ Interpretation of coefficients with and without controls
▶ Estimation with OLS and Inference
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Undergrad Recap: Goal of Linear Regression

Quantify the expected effect of a one unit change in X on Y

▶ If X goes up by one unit, by how many units does Y go up or down?
▶ Causal interpretation: If we/nature/an experimenter changes X by one unit,

what is the expected effect on Y ?

This effect is equivalent to the slope coefficient β1 in a linear regression model

Y = β0 + β1X + u
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Linear Regression
Regression analysis means that we fit a straight line through (X , Y ) data points

80 100 120 140

40
60

80
10

0

IQ

E
ar

ni
ng

s 
in

 1
00

0E
U

R

In this example, the regression line is Earnings = −3000 + 700 IQ

▶ An increase in the IQ by one point increases earnings on average by 700 EUR
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What we are looking for: the conditional expectation function

In undergraduate econometrics, you probably learned about a population regression
model

▶ the idea is that there is a true relationship between X and Y that we want to
estimate

▶ we have a sample of n observations from this population and estimate β̂0, β̂1
using OLS

But is the population regression model (PRM) really what we are looking for?

▶ Yes and no. The PRM is an approximation of our object of interest
▶ This object is called the conditional expectation function (CEF)
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Ingredients: Random Variables

Random variables are variables that take on different values with a certain probability

▶ x is a random variable that takes on values x1, x2, . . . , xn with probabilities
f (x1), f (x2), . . . , f (xn)

Expected value: the average value of a random variable

E (x) = x1f (x1) + x2f (x2) + · · · + xk f (xn)

=
n∑

j=1
xj f (xj)
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Expected Value: Example

x ∈ {−1, 0, 2} with probabilities f (−1) = 0.3, f (0) = 0.3, f (2) = 0.4. The expected
value of X is

E (x) = (−1)(0.3) + (0)(0.3) + (2)(0.4)
= 0.5
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Notation
We denote random variables with lower case letters x , y .

Typically, we do not use indices when we talk about the population. For example,
the linear relationship between x and y in the population is

y = β0 + β1x + u

Realisations of a random variable are denoted with lower case letters with indices xi
with i = 1, . . . , n. We also use indices when

▶ Talking about relationships in the sample
▶ Talking about particular realisations of a random variable: xi = x , for example

xi = female or xi = 5

This can be confusing at the start but you’ll get used to it!
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The Conditional Expectation Function
We are interested in explaining the relationship between x and y in the population

A useful concept in this regard is the Conditional Expecation Function (CEF):
E (yi |xi)

▶ what is the population average of yi for a given value of xi
▶ i.e. what if xi takes value x?

Example: x is a dummy that equals one if a person is female and zero otherwise. y is
earnings.

The CEF can take on two values:

▶ Average earnings of women E (yi |xi = 1)
▶ Average earnings of men/other E (yi |xi = 0)
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A Continuous CEF
Education vs earnings (from Angrist & Pischke, MHE)

At every level of completed education, we have a different expected value of earnings
▶ At each value xi we have a distribution of yi
▶ and the CEF comprises the averages of this distribution
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Regression is a Linear Approximation of the CEF
The population regression model (PRM) is a linear approximation of the CEF

y = β0 + β1x + u

▶ Our ultimate goal is to know the CEF
▶ But: with a linear regression, we can estimate the parameters of the PRM
▶ I.e. we cannot estimate the CEF directly

Why a linear approximation is useful:

▶ We typically have small sample sizes, so approximating a non-linear function is
difficult

▶ We are often interested in marginal effects, so a linear approximation is often
sufficient
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PRM: Linear Approximation of the CEF

The dashed line is the Population regression model y = β0 + β1x + u. The solid line is
the CEF E (y |x).
It can be shown that the PRM is the best linear approximation of the CEF (see
Angrist & Pischke, MHE, ch. 3). 15 / 75



CEF and PRM: what’s all this about?‘

The CEF is the object of interest in (most of) econometrics

▶ The PRM y = β0 + β1x + u is a linear approximation of the CEF.
▶ But it is an approximation, so it can be wrong.
▶ With data, we can draw inference on the PRM but not on the CEF

What does this mean for the empirical analysis?

▶ We need to think about the relationship between x and y in the population
▶ Linear approximations are more innocuous when we consider small changes in x
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The Sample Regression Function

Now suppose we have a sample of size n that was randomly sampled from the
population, (y1, x1), . . . , (yn, xn)

The sample regression function is

ŷi = β̂0 + β̂1xi (1)

We can estimate the parameters β̂0 and β̂1 with Ordinary Least Squares (OLS)
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OLS: Intuition
Let’s start with some data points
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OLS: Intuition
Goal: fit a regression line through those points
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OLS: Intuition
The key ingredient of OLS are the residuals ûi = yi − b̂0 − b̂1xi
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OLS: Intuition
Now consider the square of each residual

2.5

5.0

7.5

10.0

12.5

0 3 6 9

x

y

21 / 75



OLS: Intuition
Let’s consider a different regression line: the squares are much larger!
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OLS: Intuition

OLS minimizes the average size of these squares

It minimizes the sum of squared residuals (SSR)

The result is the best-fitting line that describes the relationship between x and y in
the sample
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OLS: Data Example
Let’s look at the relationship between education and wages with data from the U.S.
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Regression Output: Interpretation

Table 1: Effect of Education on Wages

Dependent variable:
wage

educ 0.541∗∗∗

(0.053)

Constant −0.905
(0.685)

Observations 526
R2 0.165
Adjusted R2 0.163
Residual Std. Error 3.378 (df = 524)
F Statistic 103.363∗∗∗ (df = 1; 524)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A 1-year increase in education is associated with a 0.54 USD increase in hourly wages
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OLS: The Math

The Ordinary Least Squares (OLS) estimators β̂0 and β̂1 are derived through the
minimization problem

(β̂0, β̂1) = arg min
b̂0,b̂1

n∑
i=1

[(yi − b̂0 − b̂1xi)2] (2)

The sample means ȳ = 1
n

n∑
i=1

yi and x̄ = 1
n

n∑
i=1

xi are the sample analogs of the

population means E (yi) and E (xi)
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OLS: The Math

The residuals of the regression are defined as ûi = yi − β̂0 + β̂1xi .

When we “run an OLS regression’ ’, we minimize the sum of squared residuals

(SSR),
n∑

i=1
ûi

2 and obtain values for β̂0 and β̂1

Solving the minimization problem (2) yields the estimators

β̂1 =
1
n

∑n
i=1(yi − ȳ)(xi − x̄)
1
n

∑n
i=1(xi − x̄)2 =

̂Cov(yi , xi)
V̂ (xi)

(3)

β̂0 = ȳ − β̂1x̄
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The Sampling Distribution of the OLS Estimator
To draw inference about the population, we need to know the sampling
distribution of the OLS estimator

What we want to know:

▶ When will β̂1 be unbiased?
▶ What is its variance?

To answer these questions, we need to make some assumptions about the sample
and population

1. Population model is linear in parameters
2. Sample is randomly drawn from the population
3. Variation in x
4. Zero conditional mean assumption (ZCM)

28 / 75



OLS Assumptions

The four OLS assumptions must be fulfilled for the OLS estimator to be unbiased
and consistent

Unbiasedness: E (β̂1) = β1

▶ across many random samples, the estimator gets it right on average

Consistency: β̂1
p−→ β1 as n → ∞

▶ if the sample size increases, the estimator converges to the true value
▶ this is a consequence of the Law of Large Numbers (LLN)
▶ As n gets larger, the sample becomes more representative of the population
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The Zero Conditional Mean (ZCM) Assumption

The ZCM assumption is the most important assumption in this module

▶ It is not testable with the data at hand
▶ It rarely holds in practice (except in randomised experiments)
▶ Causal inference techniques exploit scenarios where ZCM holds approximately

Other names for the ZCM assumption:

▶ Conditional independence assumption (CIA)
▶ Exogeneity assumption
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The Zero Conditional Mean (ZCM) Assumption

Consider the population model

y = β0 + β1x + u

The ZCM assumption states that the conditional mean of the error term is zero

E (u|x) = E (u) = 0

What does this mean?

▶ The error term is not systematically related (speak: uncorrelated) with x
▶ At any level of x , the average value of u is zero
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ZCM Assumption: Example

Does higher education (causally) increase earnings?

wagei = β0 + β1educationi + ui

What is the error term ui here?

▶ Any determinant of a person’s wage that is not education
▶ E.g., innate ability, motivation, personality, etc.
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ZCM Assumption: Example

Say ui includes ability. According to the ZCM assumption, the following must hold:

E (ability | education = 8) = E (ability | education = 12) = E (ability | education = 16)

So it must hold that:

▶ the average ability of people with 8 years of education is the same as
▶ the average ability of people with 12 years of education and
▶ the average ability of people with 16 years of education

This is hardly plausible ⇒ ZCM assumption is violated
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What if ZCM is Violated?

The OLS estimator of β1 is biased and inconsistent

Bias: E (β̂1) ̸= β1

▶ The expected value of the OLS estimator is not equal to the true value of β1
▶ Across many samples, the estimates are systematically too big or too small

Inconsistency: β̂1 does not converge to β1 as n → ∞

▶ Even if the sample size is very large, the OLS estimator does not converge to the
true value of β1
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How to think about Violations of ZCM
The variable x is typically a choice

▶ People choose how much education to get, how often they go to the gym, how
much they save, who they want to date, etc

▶ Firms choose how much to invest, how many workers to hire, how much to
pollute, etc.

▶ Governments choose how much to spend on education, how much to tax, etc.

The choice of x is typically influenced by other factors u

▶ Individual factors: ability, motivation, preferences, etc.
▶ Firm factors: technology, market conditions, etc.
▶ Government factors: ideology, political pressure, etc.

Problem: u affects y not just through x but also through other paths or directly
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How to think about Violations of ZCM
The error term u includes one or more confounders

Here u includes a confounder y directly and through x

Example: x is education, y is earnings, u is ability
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Omitted Variable Bias

Suppose the true model is y = β0 + β1x + β2s1 + e

However, we estimate the model y = β̃0 + β̃1x + u

It can be shown that the OLS estimator is biased

β̃1 = β1 + β2
Cov(x , s1)

Var(x)︸ ︷︷ ︸
OVB
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So when does ZCM hold?

ZCM holds if x is as good as randomly assigned to individuals

▶ This is the case if x is assigned in a randomised experiment
▶ Or if x is assigned in a quasi-experiment that mimics random assignment
▶ Or if we can control for all confounders in the analysis

We should always assume that ZCM is violated. Researchers need to think hard
about confounders and how to eliminate them.
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The Sampling Distribution of the OLS Estimator

So far, we only talked about the mean of the OLS estimator β̂1

▶ Suppose we run the same regression in many samples
▶ The mean of the OLS estimator is the average of the estimates across

samples

However, to draw inference about the population, we need to know more than the
mean

▶ How is β̂1 distributed across samples?
▶ But how can we know this distribution if we only have one sample?
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The Sampling Distribution of the OLS Estimator
Enter: the Central Limit Theorem (CLT)

▶ If the sample size is large enough. . .
▶ the sampling distribution is approximately normal

Under the CLT and an assumption of homoskedastic errors, the sampling distribution
of the estimator is:

β̂1 ∼ N(β1, σ2
β̂1

)

where σ2
β̂1

= σ2∑n
i=1(xi −x̄)2

Going into the assumptions behind this distribution is beyond this module. Most
econometrics textbooks provide in-depth discussions
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The Sampling Distribution of the OLS Estimator

Let’s draw 1,000 samples of size n = 100 from the following data-generating process
and run 1,000 regressions:

y = 1 + 2x + u

where u ∼ N(0, 1) and x ∼ U(0, 10)

And then we run a regression in each sample and store the slope coefficient β̂1
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The Sampling Distribution of the OLS Estimator
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▶ The distribution is centered on the true value β1 = 2
▶ The distribution is approximately normal
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The Sampling Distribution of the OLS Estimator

An important statistic for inference is the standard error of the OLS estimator

SE (β̂1) =
√

σ̂2∑n
i=1(xi − x̄)2

where σ̂2 = 1
n−2

∑n
i=1 û2

i

SE (β̂1) is an estimate of the standard deviation of the sampling distribution

▶ It tells us how much the he OLS estimator varies across samples
▶ Larger sample size → smaller standard error
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Why We Need the Sampling Distribution

We need the sampling distribution to draw inference about the population

▶ We typically test the hypothesis that the true value β1 = 0
▶ Based on the (estimated) sampling distribution, we can test this hypothesis
▶ We can use the t-statistic, the p-value, or confidence intervals

How this works: please check econometrics/statistics textbooks
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Controlling for Confounders: Multivariate Regression
We can include confounders in the regression model to control for them

y = β0 + β1x + Sγ + u

Here, S is a vector of covariates S = (s ′
1, s ′

2, . . . , s ′
k) and γ = (γ1, γ2, . . . , γk) is a

vector of coefficients,1 i.e.

Sγ = γ1s1 + γ2s2 + · · · + γksk

We are only interested in β1, the causal effect of x on y

▶ The other coefficients γ1, γ2, . . . , γk are not of interest (nuisance parameters)
▶ We include the covariates S to control for confounders

1Note: each element of S is in itself an (1 × n) vector. E.g. s1 = (s11, s12, . . . , s1n) so S is actually
an (n × k) matrix
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Interpretation of β1 in Multivariate Regression

β1 now has a ceteris paribus interpretation

▶ Holding all other variables S constant, a one unit increase in x leads to a β1
unit increase in y

The inclusion of S allows for a like-with-like comparison

▶ We compare units with the same values of S but different values of x
▶ But the like-with like comparison is only valid if S contains all confounders
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Anatomy of Regression: the Frisch-Waugh-Lovell Theorem

Population model:

y = β0 + β1x1 + β2x2 + u

The FWL theorem states that three OLS estimators for β1 are equivalent

1. regressing y on x1 and x2
2. regressing y on x̃1, the residuals from a regression of x1 on x2
3. regressing ỹ on x̃1, with ỹ being the residuals from a regression of y on x2

The main insight comes from point 2. . .
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Anatomy of Regression: the Frisch-Waugh-Lovell Theorem

Multivariate regression does two steps at the same time:

1. It purges the correlation between x1 and x2 from x1; the residuals x̃1 are “what’s
left”; they are uncorrelated with x2

2. It estimates the effect of x̃1 on y , i.e. after purging the correlation between x1 and
x2

Why is this important?

▶ If x2 is a confounder, we can purge its influence by including it in the regression

The same also holds for more than one control variable

48 / 75



FWL Example: Effect of Education on Earnings
Suppose abil (ability) is a confounder

Let’s first look at the auxiliary regressions (for generating the residuals)

Table 2:

Dependent variable:
educ wage
(1) (2)

abil 1.279∗∗∗ 1.123∗∗∗

(0.039) (0.032)
Constant 4.459∗∗∗ 2.446∗∗∗

(0.258) (0.212)
Observations 526 526
R2 0.670 0.699
Adjusted R2 0.669 0.699

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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FWL Example: Effect of Education on Earnings
Now let’s look at the main regressions

Table 3:

Dependent variable:
wage residwage

(1) (2) (3) (4)
educ 0.764∗∗∗ 0.533∗∗∗

(0.017) (0.027)
abil 0.442∗∗∗

(0.043)
resideduc 0.533∗∗∗ 0.533∗∗∗

(0.061) (0.027)
Constant −0.036 0.072 9.562∗∗∗ 0.000

(0.221) (0.202) (0.097) (0.043)
Observations 526 526 526 526
R2 0.790 0.826 0.127 0.421
Adjusted R2 0.790 0.825 0.125 0.420

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Insights from the previous slide

Columns (1) and (2) show that the omission of abil leads to an upward bias

The coefficient of educ is the same in Columns (2), (3) and (4) is the same ⇒ FWL

The regression in Column (2) takes two steps at a time:

1. “regresses out” (a.k.a “partials out”) the confounding influence of ability on
education

2. provides the partial effect of education on wages that is not driven by ability

Thanks to FWL, we can eliminate the confounding influence of other variables.
This is BIG!
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Conditional Mean Independence Assumption

The Conditional Mean Independence Assumption (CMIA) is a “light” version of
the ZCM assumption.

E (u | x , S) = E (u | S) = 0

In plain English: as long as S is included, the error term u is uncorrelated with x

▶ x is exogenous conditional on S
▶ x is as good as random conditional on S
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Controlled Regression in Practice

Elsner & Wozny (2023): what is the impact of low-dose radiation on cognitive
ability?

▶ Long-run exposure to low-dose radiation can affect cognitive ability through its
effect on the brain and general health effects

Challenge: people are usually not randomly exposed to radiation

▶ Our setting: exploit variation in the Chernobyl fallout across Germany
▶ This was driven by wind and rain patterns in April 1986
▶ Look at the effect on test scores 25 years
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Variation in Chernobyl-induced ground radiation in Germany, 1986
Is this variation as good as random?
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Example: Elsner & Wozny (2023)

testscorei = β0 + β1radiationi + ui

Radiation exposure is likely not random...

▶ People could not foresee the Chernobyl accident
▶ But: some areas are more prone to radiation when an accident happens
▶ More prone: higher rainfall, higher altitude, further East
▶ People in more prone areas are likely different from people in less prone areas

So ZCM is violated: E (u | radiation) ̸= 0
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Solution: include potential confounders

We need to control somehow for "proneness to radiation"

▶ Control for average rainfall in April and for altitude

We can include state dummies

▶ Compare people who reside in the same state but are exposed to different
levels of radiation

▶ This means that we run a regression with group fixed effects δs (more on this
later)
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Solution: include potential confounders

testscorei = β0 + β1radiationi + β2raini + β3alti + δs + ui

Does the Conditional Mean Independence Assumption (CMIA) hold?

▶ I.e. is radiation as good as randomly assigned conditional on rainfall, altitude and
state dummies?

E (ui | radiationi , raini , alti , δs) = 0
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Does CMIA Hold? Balancing Tests
We run balancing tests based on observable characteristics (age, gender,
education, parental education)

▶ Run regressions of observable characteristics on radiation, rainfall, altitude and
state dummies

▶ Ideally, there should be no correlation between radiation and the observables
▶ This would be evidence in favour of CMIA, but no proof

Results:

▶ radiation is correlated with some observables: negatively with own and parental
education

▶ but this correlation is removed once we control for altitude and rainfall
▶ this is evidence that CMIA holds

See here for the table of balancing tests: LINK
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Results

Higher radiation in 1986 ⇒ lower test scores in 2011

In the paper we do a lot more to convince the reader
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Using Controlled Regression for Causal Inference

The key to any research design is CREDIBIILTY

With controlled regression, the credibility of causal identification hinges on the ZCM or
CMIA assumption

▶ Assumption: conditional on controls, x is as good as randomly assigned
▶ This design is called selection on observables
▶ The assumption is untestable! But we can (and must) bring evidence and good

arguments in favour of it
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Selection on observables: ingredients of a good paper

1) Theory: why should x affect y to begin with? And through what channels?

2) A clear statement and discussion of the identification assumption:

▶ What is the ZCM/CMIA in your context? Why should it hold? What are
potential challenges?

▶ DAG: what are the confounders? Why should I include them in the regression?

3) Balancing tests:

▶ show that x is as good as randomly assigned conditional on controls

4) Extensive robustness checks to rule out alternative explanations
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Common mistake: kitchen sink regressions

A common problem: people start with a model like this

yi = β0 + β1xi + Sγ + ui

and include in S every variable they can find (everything but the kitchen sink)

Don’t do this!!!

▶ you could condition on colliders or mediators
▶ you could condition on irrelevant variables
▶ readers won’t believe you

DAGs will help!
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Summary: What you need to understand for this module

Logic of linear regression

▶ Why we use linear regression
▶ Why and how we use OLS to estimate the parameters of the linear regression

model
▶ How to interpret the OLS estimator β̂1
▶ What multivariate regression does, especially the FWL theorem

Uses and limitations of linear regression for causal inference

▶ The ZCM assumption is violated in most applications, leading to OVB
▶ How control variables can be used to control for confounders: the CMIA

assumption
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Appendix
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Regression with R

# Required packages (install if necessary)
library(tidyverse)
library(wooldridge)
library(stargazer)
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Regression with R

This code shows how to estimate and present regressions with R

data('wage1') # load the data
df <- wage1
reg1 <- lm(wage ~ educ, data = df) # estimate simple regression
reg2 <- lm(wage ~ educ + exper, data = df) # estimate multivariate regression

stargazer(reg1, reg2, type = "text") # print regression results
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Regression outputs with Stargazer and R Markdown

You can generate nice regression tables with the stargazer package and R
Markdown/Quarto. Here is a code chunk that gives you a nicely formatted latex table.

```{r, results='asis', echo=FALSE}
stargazer(reg1, reg2,

header=FALSE,
type='latex',
title="Effect of Education on Wages")

```
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Regression with R

We can also generate a scatter with a regression line

ggplot(df, aes(x = educ, y = wage)) + # generate scatter plot
geom_point() + # add points
geom_smooth(method = "lm", se = FALSE) + # add regression line
theme_minimal()
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Group Work Questions I

What is the difference between unbiasedness and consistency of an estimator?

What is the sampling distribution of an estimator? Provide an intuitive explanation

How is the sampling variance of an estimator related to the sample size?

70 / 75



Group Work Questions II

Suppose you have a variable z that is omitted from the population model

y = β0 + β1x + β2z + u

The correct population parameter, β1, is positive.

▶ a) Suppose you know that cov(x , z) > 0 and β2 < 0. How will the OLS estimator β̂1
be biased when z is omitted? Will it be over- or underestimated?

▶ b) Draw a DAG with z as a confounder and indicate the two factors that make up the
omitted variable bias
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Group Work Questions III

On the following slide, you see a regression output with two columns. In data on
school districts in California, we want to study whether larger class sizes lead to lower
test scores. The dependent variable is the average test score in a school district; the
regressor of interest is the average class size in a school district. In Column (2), we
control for the percentage of students in a school district who are not English native
speakers (a proxy for poverty).

▶ a) Interpret the slope coefficient on class size in Column (1)
▶ b) Given the results in Column (2), what can we say about the correlation between

class size and the share of non-native English speakers in a school district?
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Group Work Questions III cont’d

Table 4:

Dependent variable:
testscr

(1) (2)
str −2.280∗∗∗ −1.101∗∗∗

(0.480) (0.380)
el_pct −0.650∗∗∗

(0.039)
Constant 698.933∗∗∗ 686.032∗∗∗

(9.467) (7.411)
Observations 420 420
R2 0.051 0.426
Adjusted R2 0.049 0.424

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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